Chalmers | GOTEBORGS UNIVERSITET
Andreas Abel, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260

Saturday, March 22, 2025, 8:30 - 12:30, J.

e Examiner: Andreas Abel (446-31-772-1731), visits 9:30 and 11:30.

e The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:
Chalmers: 3: > 24 points, 4: > 36 points, 5: > 48 points.
GU: Godkéand > 24 points, val godkand > 48 points.
PhD student: > 36 points to pass.

e Results: within 21 days.

e Permitted materials (Hjalpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes — a
“summary sheet”. These notes may be typed or handwritten. They may be from any
source. If this summary sheet is brought to the exam it must also be handed in with the
exam (so make a copy if you want to keep it).

e Notes:

Read through the exam sheet first and plan your time.
— Answers preferably in English, some assistants might not read Swedish.

— If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

— Start each of the questions on a new page.

— The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

— Hand in the summary sheet (if you brought one) with the exam solutions.

— Exam review: please contact the examiner.

A DSL for boxy text layout

Consider the following DSL for 2-dimensional text layout.
Types:

type Height -- Non-negative integers.
type Width -- Non-negative integers.
type HAlign -- Horizontal alignment.
type VAlign -- Vertical alignment.
type Bozx -- Rectangular area.

Elementary constructors:

left, middle, right :: HAlign
top, center, bottom :: VAlign

line 2 String — Box -- Minimal box of height 1 holding the given text.
box i [String] — Box -- Minimal box holding a text given by a list of lines.
empty :: Boz -- Empty box taking no space.
blank :: Height — Width — Box -- Empty box with the given dimension.
vphantom :: Height — Box -- Zero-width box of the given height.
hphantom :: Width — Box -- Zero-height box of the given width.

Combinators:

beside :: VAlign — Box — Box — Box
-- Place two boxes beside each other with the given vertical alignment.

above :: HAlign — Box — Box — Boz
-- Stack two boxes vertically with the given horizontal alignment.

Run function:

data Pic = Pic
{ height :: Height
, width 2 Width
, content :: [String] - list of "height’ lines of length "width’

}

render :: Bor — Pic

CLARIFICATION: content should be padded, so have exactly height many String entries
of length exactly width.

Here is an example use of this DSL:

spaceToDot = mapAcase {’> > — ’.%;¢c — ¢}
exl = spaceToDot o unlines o content o render $
foldr1 (beside top)
[foldr1 (above center) $
hphantom 12 :
map line ["EU Country", replicate 10 ’~’, "France", "Germany", "Sweden" |

, hphantom 2
, foldr1 (above right) $
map line ["Area/ku®", replicate 8 *=*, "551,695", "357,592", "450,295"]

]

CLARIFICATION: above center is a typo, it should be above middle.

exl generates the following picture:

.EU.Country. . .Area/km?

..France....... 551,695
..Germany...... 357,592
..Sweden....... 450,295

Problem 1 (12p): (Shallow embedding of the DSL)

Implement DSL using a shallow embedding of Boz.
You may assume the following padding functions to implement alignment:

-- Insert padding according to "VAlign’ to give the 'Pic’ a larger 'Height’.
vpad :: VAlign — Height — Pic — Pic

-- Insert padding according to "HAlign’ to give the 'Pic’ a larger "Width’.
hpad :: HAlign — Width — Pic — Pic

CLARIFICATION: wpad and hpad take padded Pics as input and produce such of
possibly larger size. They may malfunction if the input is not correctly padded.

Problem 2 (10p): (Laws of the DSL)

1. Formulate some laws involving above and beside you expect to hold. You can write down
formulas or use precise mathematical language to describe them (e.g. “+ is a monoid with
unit 07).

2. If I replace foldri with foldl1 in example exl, I get a slightly different output:

.EU.Country. . .Area/km?

...France...... 551,695
. .Germany...... 357,592
..Sweden...... 450,295

This indicates that a certain law fails to hold in my implementation.

1 Which one?
2 What could be the reason?

3 Does it also fail in your implementation? (Justify your answer.)

Problem 3 (8p): (Deeper embedding of the DSL)

Sketch a deeper embedding of the DSL that does not exhibit the problem with foldri vs. foldl1
in the previous question. You can refer to the code of your shallow embedding to explain the
deeper embedding.

It is not necessary to write out a full implementation. It is sufficient to explain the idea of
the solution and the data structure(s) needed to do so.

Monads for Cost Accounting

In the following problems, we will develop monads that allow to attach costs to computations
and account for these costs.

class (Monad m, Monoid ¢) = MonadCost ¢ m where
pay:ic—ma—ma

type Cost c a

runCost :: Cost ¢ a — (a, c)

instance Monoid ¢ = Monad (Cost c)
instance Monoid ¢ = MonadCost ¢ (Cost c)

Using this API, we can implement cost-instrumented programs. For example, the following
function computes the greatest common divisor and counts the number of subtractions needed
to do so.

gcd i MonadCost Integer m = Integer — Integer — m Integer
ged mn
| n <0 = return m
| m < 0= return n
| otherwise = case compare m n of
LT — pay 18 ged m (n —m)
GT — pay 1 $ ged (m —n) n
EQ — return m
exGed = runCost $ ged 640 60

Definition exGed has value (20,12) meaning that the ged of 640 and 60 was computed to 20
using 12 subtractions.

Problem 4 (6p): (Implement Cost)

Implement the type Cost, function runCost and the instances for Monad and MonadCost. (You
need not implement the Functor and Applicative instances.)

Problem 5 (12p): (Verify Cost)

Prove the following properties (written as QuickCheck properties) using step-by-step equational
reasoning. Each step must be explicitly justified, either "by definition”, by appeal to some
theorem or already proved property, or by some (induction) hypothesis.

prop_pay_empty m = pay mempty m = m
prop_pay_-mappend ¢ ¢’ m = pay ¢ (pay ¢’ m) = pay (¢ <> ') m
prop_pay_-bind ¢ ¢’ mk = (pay ¢ m>= Xa — pay ¢’ (k a)) = pay (¢ <> ') (m>=k)

The third property requires the Monoid ¢ to be commutative.

Problem 6 (12p): (Fueled computation)

In the following, rather than just being interested in the total cost of a computation, we want
to limit the cost of a computation. We run computations with a budget from which the costs
are paid. If the budget is spent before the computation has finished, we abort the computation.
Function try m handler allows us to run handler if m was aborted, yet the handler only receives
the budget that was left just before the first payment in m failed.

class (MonadCost ¢ m, Num ¢, Ord ¢) = MonadFuel ¢ m where
try:ma—ma—ma

type Fueled c a

instance (Monoid ¢, Num ¢, Ord ¢) = MonadCost ¢ (Fueled c)
instance (Monoid ¢, Num ¢, Ord ¢) = MonadFuel c (Fueled c)

The runner runFueled for Fueled ¢ a computations takes a fallback value in ¢ and a initial
budget in c¢. In any case, the remaining fuel is returned. If the computation ran out of fuel, the
fallback value is returned, otherwise the result of the computation.

runFueled :: a — ¢ — Fueled ¢ a — (a,c)

As an example, let us first implement a helper afford that will run a priced computation if
possible or return a fallback value.

afford :: MonadFuel c m = a —c—ma—ma
afford fallback cost computation =
try (pay cost computation) (return fallback)

Using afford, the function hare n computes (m,n’) such that m is largest with n = n’ +1 +
2+ ...+ m and n,n’, m are natural numbers.

hare :: Integer — (Integer, Integer)
hare n = runFueled (—1) n $ loop 0
where
loop :: Integer — Fueled Integer Integer
loop m = afford m (m + 1) $ loop (m + 1)

1. Implement type Fueled, function runFueled and the Monad, MonadCost, and MonadFuel
instances. To that end, you may use the standard Haskell monad transformers.

2. What does your implementation return in the following example?

exTry = runFueled "A" 4 do
try (pay 3 $ pay 3 $ return "B") do
try (pay 2 $ return "C") do
pay 1§ return "D"

Explain the result.

3. Which of the laws of pay that we have required for Cost also hold for Fueled?

Please justify your answer, but a formal proof is not required.

Good luck!

