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(including example solutions to programming problems)

• Examiner: Andreas Abel (+46-31-772-1731), visits 9:30 and 11:30.

• The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: ⩾ 24 points, 4: ⩾ 36 points, 5: ⩾ 48 points.
GU: Godkänd ⩾ 24 points, väl godkänd ⩾ 48 points.
PhD student: ⩾ 36 points to pass.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes – a
“summary sheet”. These notes may be typed or handwritten. They may be from any
source. If this summary sheet is brought to the exam it must also be handed in with the
exam (so make a copy if you want to keep it).

• Notes:

– Read through the exam sheet first and plan your time.

– Answers preferably in English, some assistants might not read Swedish.

– If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

– Hand in the summary sheet (if you brought one) with the exam solutions.

– Exam review: please contact the examiner.
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A DSL for boxy text layout

Consider the following DSL for 2-dimensional text layout.
Types:

type Height -- Non-negative integers.
type Width -- Non-negative integers.
type HAlign -- Horizontal alignment.
type VAlign -- Vertical alignment.
type Box -- Rectangular area.

Elementary constructors:

left ,middle, right ::HAlign
top, center , bottom ::VAlign

line :: String → Box -- Minimal box of height 1 holding the given text.
box :: [String ]→ Box -- Minimal box holding a text given by a list of lines.
empty :: Box -- Empty box taking no space.
blank ::Height →Width → Box -- Empty box with the given dimension.
vphantom ::Height → Box -- Zero-width box of the given height.
hphantom ::Width → Box -- Zero-height box of the given width.

Combinators:

beside ::VAlign → Box → Box → Box
-- Place two boxes beside each other with the given vertical alignment.

above ::HAlign → Box → Box → Box
-- Stack two boxes vertically with the given horizontal alignment.

Run function:

data Pic = Pic
{height ::Height
, width ::Width
, content :: [String ] -- list of ’height’ lines of length ’width’
}

render :: Box → Pic

CLARIFICATION: content should be padded, so have exactly height many String entries
of length exactly width.

Here is an example use of this DSL:

spaceToDot = mapλcase {’ ’→ ’.’; c → c}
ex1 = spaceToDot ◦ unlines ◦ content ◦ render $
foldr1 (beside top)
[foldr1 (above center) $
hphantom 12 :
map line ["EU Country", replicate 10 ’-’, "France", "Germany", "Sweden"]
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, hphantom 2
, foldr1 (above right) $
map line ["Area/km2", replicate 8 ’-’, "551,695", "357,592", "450,295"]

]

ex1 generates the following picture:

.EU.Country...Area/km2

.----------...--------

..France.......551,695

..Germany......357,592

..Sweden.......450,295

CLARIFICATION: above center is a typo, it should be above middle.

Problem 1 (12p): (Shallow embedding of the DSL)

Implement DSL using a shallow embedding of Box .
You may assume the following padding functions to implement alignment:

-- Insert padding according to ’VAlign’ to give the ’Pic’ a larger ’Height’.
vpad :: VAlign → Height → Pic → Pic

-- Insert padding according to ’HAlign’ to give the ’Pic’ a larger ’Width’.
hpad :: HAlign →Width → Pic → Pic

CLARIFICATION: vpad and hpad take padded Pics as input and produce such of
possibly larger size. They may malfunction if the input is not correctly padded.

SOLUTION:

type Height = Int -- non-negative
type Width = Int -- non-negative

type VAlign = Align
type HAlign = Align

data Align
= Start -- Align left (horizontal mode) or top (vertical mode).
| Center -- Center.
| End -- Align right (horizontal mode) or bottom (vertical mode).
deriving (Eq ,Show ,Enum,Bounded)

left = Start
middle = Center
right = End

top = Start
center = Center
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bottom = End

type Box = Pic
render = id

line s = Pic 1 (length s) [s ]

empty = Pic 0 0 [ ]
blank h w = Pic h w $ replicate h $ replicate w ’ ’

hphantom w = blank 0 w
vphantom h = blank h 0

beside a p1@(Pic h1 w1 c1 ) p2@(Pic h2 w2 c2 )
| h1 < h2 = beside a (vpad a h2 p1 ) p2
| h1 > h2 = beside a p1 (vpad a h1 p2 )
| h1 ≡ h2 = Pic h1 (w1 + w2 ) $ zipWith (++) c1 c2

above a p1@(Pic h1 w1 c1 ) p2@(Pic h2 w2 c2 )
| w1 < w2 = above a (hpad a w2 p1 ) p2
| w1 > w2 = above a p1 (hpad a w1 p2 )
| w1 ≡ w2 = Pic (h1 + h2 ) w1 $ c1 ++ c2

box [ ] = empty
box (s : ss) = above left (line s) (box ss)

This is the implementation of padding.

-- Insert padding according to ’VAlign’ to give the ’Pic’ a larger ’Height’.
vpad :: VAlign → Height → Pic → Pic
vpad a h (Pic h ′ w ls) = Pic h w $ pad a h h ′ (replicate w ’ ’) ls

-- Insert padding according to ’HAlign’ to give the ’Pic’ a larger ’Width’.
hpad :: HAlign →Width → Pic → Pic
hpad a w (Pic h w ′ ls) = Pic h w $map (pad a w w ′ ’ ’) ls

-- Pad a list of things with copies of a thing to stretch it to a new length.
-- Precondition: n ⩾ n’ and all elements of xs have length n’.
-- Postcondition: all elements of the result have length n.

pad :: Align → Int → Int → a → [a ]→ [a ]
pad a n n ′ x xs = case a of

Start → xs ++ replicate d x
End → replicate d x ++ xs
Center → replicate d1 x ++ xs ++ replicate d2 x
where
d = n − n ′

d1 = d ‘div ‘ 2
d2 = d − d1

GRADING: Common glitches (no points deducted): ±0p

• Suprisingly many did not simply define type Box = Pic (the standard choice for a
shallow embedding) but a Box that was merely isomorphic to Pic, requiring back and
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forth conversions.

• Most ignored that maximum does not work for empty lists.

• Many opted to define hphantom and vphantom directly rather than via blank . (From a
cognitive perspective, this is not suprising, as we tend to build understanding by looking
first at the simple cases before attacking the general case. Mathematically, hpantom and
vphantom are very much redundant; their purpose was to draw attention to the special
cases of zero height and zero width blanks that could otherwise be overlooked.)

Common errors:

• Many missed that the box constructor needs to construct rectangular text (adding spaces
at the right to achieve uniform width)—otherwise horizontal composition does not produce
columns but faulty per-line concatenation: -2p

• Similar issues can arise with blank but suprisingly this was much less frequent.

Individual errors:

• type Box = [String ] does not work since one cannot implement hphantom.

• Proving a deep instead of a shallow embedding: -2p

• Adding heights or widths where maximum is needed: -1p each.

• Missing maximum to compute Width of Pic: -1p

• Malformed call to hpad or vpad : -1p

Problem 2 (10p): (Laws of the DSL)

1. Formulate some laws involving above and beside you expect to hold. You can write down
formulas or use precise mathematical language to describe them (e.g. “+ is a monoid with
unit 0”).

2. If I replace foldr1 with foldl1 in example ex1 , I get a slightly different output:

.EU.Country...Area/km2

.----------...--------

...France......551,695

..Germany......357,592

...Sweden......450,295

This indicates that a certain law fails to hold in my implementation.

1 Which one?

2 What could be the reason?

3 Does it also fail in your implementation? (Justify your answer.)
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SOLUTION: For each alignment mode a, we expect both above a and beside a to be
monoids with unit empty . This is true except that:

1. Associativity fails for Center alignment, both for above and beside.

2. Reason are rounding errors when splitting uneven total padding into left and right padding.
If we center a single letter in a box of width 3, we expect it in the middle with one space
character on each side. However, if we first center it in a box of width 2, and the result
in a box of width 3, then the character will be left aligned, because in each of the two
steps we allocate the one-space padding at the right end. (Depending on implementation,
it could also be that each time we allocate at the left end and get a right-aligned text as
the final result.)

3. Yes, because in the centering case the left padding is computed by d ‘div ‘ 2 from the total
padding d and this rounds down each time.

For completeness, we spell out the properties as QuickCheck properties:

prop empty above a p = above a empty p ≡ p
prop above empty a p = above a p empty ≡ p

prop empty beside a p = beside a empty p ≡ p
prop beside empty a p = beside a p empty ≡ p

-- Associativity fails in the Center case due to rounding errors
prop above assoc a p1 p2 p3 = a ≡ Center
∨ above a (above a p1 p2 ) p3 ≡ above a p1 (above a p2 p3 )

prop beside assoc a p1 p2 p3 = a ≡ Center
∨ beside a (beside a p1 p2 ) p3 ≡ beside a p1 (beside a p2 p3 )

prop counterexample assoc center = (p1 <> p2 )<> p3 ̸≡ p1 <> (p2 <> p3 )
where
(<>) = above Center
p1 = line "abc"

p2 = line "x"

p3 = line "yz"

GRADING:

• There are many laws about height and width that are not so interesting for the purpose
of this problem, but gave partial credit if the monoid laws were not given.

• Many knew that the foldl vs. foldr discrepancy points to a failure of associativity.

• The best explanations of the failure of associativity would point to the asymmetry in
padding when centering, caused by the need to round or truncate when diving an odd
amount of padding by two. Explanations that did not get to the bottom of the problem,
i.e., did not clearly point to the rounding error or lack of symmetry in centering, could
get partial credit: -2p.
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• Some suggested that hpad and vpad are just wrongly implemented. That is not the case.
Their type does not permit an implementation that can compensate the rounding errors,
because Pic cannot store that rounding has happened: by its specification, the content
needs to be exactly height lines of exact length width.

• If one drops this specification, one could hack the information in there: for odd width,
if all the content lines are short by one character, this could code that there is a virtual
“half space” on each side. These half spaces can compensate a subsequent odd padding or
they become a single space at the end during the final rendering. (One participant came
up with this solution in Problem 3, but a clean implementation of this solution would add
a Bool flag to Box whether such half space is present rather than hacking it into content .)

Problem 3 (8p): (Deeper embedding of the DSL)

Sketch a deeper embedding of the DSL that does not exhibit the problem with foldr1 vs. foldl1
in the previous question. You can refer to the code of your shallow embedding to explain the
deeper embedding.

It is not necessary to write out a full implementation. It is sufficient to explain the idea of
the solution and the data structure(s) needed to do so.

SOLUTION: To fix the problem with associativity of composition, we perform composition
(and thus padding) lazily. Boxes are now modelled by a trees that in the leaf have Pics and the
nodes can either be horizontal or vertical compositions, each taking a list of subtrees. The nodes
also store the alignment mode and cache the size of the picture resulting from the composition.

data Box ′

= P Pic -- basic text box
| H Height Width Align [Box ′ ] -- horizontal sequence of boxes
| V Height Width Align [Box ′ ] -- vertical sequence of boxes

size :: Box ′ → (Height ,Width)
size = λcase
P (Pic h w )→ (h,w)
H h w → (h,w)
V h w → (h,w)

The rendering of nodes takes care that all pictures in the composition are padded to the final
height or width before concatenation.

render ′ :: Box ′ → Pic
render ′ = λcase
P p → p
H h w a bs → foldr1 (beside a) $map (vpad a h ◦ render ′) bs
V h w a bs → foldr1 (above a) $map (hpad a w ◦ render ′) bs

The composition operators beside ′ and above ′ need to make sure they merge compositions of
the same alignment into one. This means, a H node with a given alignment may not directly
contain H nodes with the same alignment again. (And analogously for V nodes.)
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This sufficies as a sketch for the deeper embedding, we list the implementation for complete-
ness sake.

The new horizontal composition beside ′ makes sure to merge horizontal compositions of the
same alignment.

beside ′ ::VAlign → Box ′ → Box ′ → Box ′

beside ′ a b1 b2 =
case (hView a b1 , hView a b2 ) of
(Yes h1 w1 bs1 ,Yes h2 w2 bs2 )
→ H (max h1 h2 ) (w1 + w2 ) a (bs1 ++ bs2 )
→ H (max h1 h2 ) (w1 + w2 ) a [b1 , b2 ]
where
(h1 ,w1 ) = size b1
(h2 ,w2 ) = size b2

To this end, we introduce a view hView that tries to view a box as a horizontal composition of
the given alignment. A single Pic can aways be seen as such.

data View
= Yes Height Width [Box ′ ]
| No

hView ::VAlign → Box ′ → View
hView a = λcase

H h w a ′ bs | a ≡ a ′ → Yes h w bs
b@(P (Pic h w )) → Yes h w [b ]

→ No

Vertical composition is implemented analogously.

above ′ ::VAlign → Box ′ → Box ′ → Box ′

above ′ a b1 b2 =
case (vView a b1 , vView a b2 ) of
(Yes h1 w1 bs1 ,Yes h2 w2 bs2 )
→ V (h1 + h2 ) (max w1 w2 ) a (bs1 ++ bs2 )
→ V (h1 + h2 ) (max w1 w2 ) a [b1 , b2 ]

where
(h1 ,w1 ) = size b1
(h2 ,w2 ) = size b2

vView ::HAlign → Box ′ → View
vView a = λcase

V h w a ′ bs | a ≡ a ′ → Yes h w bs
b@(P (Pic h w )) → Yes h w [b ]

→ No

The basic constructors are straightforward:

box ′ :: [String ]→ Box ′

box ′ = P ◦ pic
pic :: [String ]→ Pic
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pic [ ] = Pic 0 0 [ ]
pic ss = Pic (length ss) w $ zipWith (λw ′ s → pad Start w w ′ ’ ’ s) ws ss

where
ws = map length ss
w = maximum ws

line ′ :: String → Box ′

line ′ s = box ′ [s ]

blank ′ :: Height →Width → Box ′

blank ′ h w = P $ Pic h w $ replicate h $ replicate w ’ ’

empty ′ :: Box ′

empty ′ = blank ′ 0 0

GRADING:

• Without making the deep embedding concrete and explaining how it fixes the problems
one could not get full points.

• The essential ingredient is a deep embedding where we keep stacks (vertical compositions)
and sequences (horizontal compositions) of boxes around that can be extended by more
elements of the same alignment.

• Only when it is clear that there will be no more extensions coming can these explicit
compositions be collapsed into a Pic. Naturally, this is when we call render , but one
could do it more eagerly, e.g. when a stack becomes an element of a sequence and thus
cannot be extended by above anymore. (There is no obvious advantage of this eagerness,
though.)

• This is the general lesson of deep embeddings: keep structural information (like the genesis
of an element) around by turning operations into “syntax”, and use this information to
inspect, optimize, or (in our case) correct an element.
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Monads for Cost Accounting

In the following problems, we will develop monads that allow to attach costs to computations
and account for these costs.

class (Monad m,Monoid c)⇒ MonadCost c m where
pay :: c → m a → m a

type Cost c a

runCost :: Cost c a → (a, c)

instance Monoid c ⇒ Monad (Cost c)
instance Monoid c ⇒ MonadCost c (Cost c)

Using this API, we can implement cost-instrumented programs. For example, the following
function computes the greatest common divisor and counts the number of subtractions needed
to do so.

gcd ::MonadCost Integer m ⇒ Integer → Integer → m Integer
gcd m n
| n ⩽ 0 = return m
| m ⩽ 0 = return n
| otherwise = case compare m n of
LT → pay 1 $ gcd m (n −m)
GT → pay 1 $ gcd (m − n) n
EQ → return m

exGcd = runCost $ gcd 640 60

Definition exGcd has value (20, 12) meaning that the gcd of 640 and 60 was computed to 20
using 12 subtractions.

Problem 4 (6p): (Implement Cost)

Implement the type Cost , function runCost and the instances for Monad and MonadCost . (You
need not implement the Functor and Applicative instances.)

SOLUTION:

newtype Cost c a = Cost {runCost :: (a, c)}
instance Monoid c ⇒ Monad (Cost c) where
return a = Cost (a,mempty)
Cost (a, c)>>= k = pay c (k a)

instance Monoid c ⇒ MonadCost c (Cost c) where
pay c (Cost (a, c′)) = Cost (a, c <> c′)

GRADING:

• Another valid solution is to define Cost c as a state monad, with field run :: c → (a, c).
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• Most defined (>>=) by hand, but first defining pay and then defining (>>=) in terms of it
simplifies the proofs in Problem 5.

Common glitches (no points deducted):

• Defining Cost to be (a, c): without a newtype wrapper, it is not possible to make this
type a Monad or MonadCost instance.

• Using 0 or (+) instead of the monoid operators mempty and (<>)/mappend .

Common errors:

• Forgetting to combine the costs of the two computations in (>>=).

• Forgetting to define a runCost with the requested type, if defining Cost as a state monad.
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Problem 5 (12p): (Verify Cost)

Prove the following properties (written as QuickCheck properties) using step-by-step equational
reasoning. Each step must be explicitly justified, either ”by definition”, by appeal to some
theorem or already proved property, or by some (induction) hypothesis.

prop pay empty m = pay mempty m ≡ m
prop pay mappend c c′ m = pay c (pay c′ m) ≡ pay (c <> c′) m
prop pay bind c c′ m k = (pay c m >>= λa → pay c′ (k a)) ≡ pay (c <> c′) (m >>= k)

The third property requires the Monoid c to be commutative.

SOLUTION: It suffices to show these properties for m of the form Cost (a, c) for arbitrary
a and c.

prop eq pay empty (Cost (a, c)) = proof
(pay mempty (Cost (a, c))) ≡⟨ Def "pay" ⟩≡
(Cost (a,mempty <> c)) ≡⟨ Thm "monoid left unit" ⟩≡
(Cost (a, c))

prop eq pay mappend c1 c2 (Cost (a, c3 )) = proof
(pay c1 (pay c2 (Cost (a, c3 )))) ≡⟨ Def "pay" ⟩≡
(pay c1 (Cost (a, c2 <> c3 ))) ≡⟨ Def "pay" ⟩≡
(Cost (a, c1 <> (c2 <> c3 ))) ≡⟨ Thm "monoid associativity" ⟩≡
(Cost (a, (c1 <> c2 )<> c3 )) ≡⟨ Def "pay" ⟩≡
(pay (c1 <> c2 ) (Cost (a, c3 )))

prop eq pay bind c1 c3 (Cost (a, c2 )) k = proof
(pay c1 (Cost (a, c2 ))>>= λa → pay c3 (k a)) ≡⟨ Def "pay" ⟩≡
(Cost (a, c1 <> c2 ) >>= λa → pay c3 (k a)) ≡⟨ Def "bind" ⟩≡
(pay (c1 <> c2 ) (pay c3 (k a))) ≡⟨ Thm "prop_pay_mappend" ⟩≡
(pay ((c1 <> c2 )<> c3 ) (k a)) ≡⟨ Thm "commutative monoid" ⟩≡
(pay ((c1 <> c3 )<> c2 ) (k a)) ≡⟨ Thm "prop_pay_mappend" ⟩≡
(pay (c1 <> c3 ) (pay c2 (k a))) ≡⟨ Def "bind" ⟩≡
(pay (c1 <> c3 ) (Cost (a, c2 )>>= k))

GRADING:

• For some solutions to Problem 4, prop eq pay mappend also required commutativity. Full
points were given for either using commutativity or simply proving pay c (pay c′ m) ≡
pay (c′ <> c) m instead.

• Proofs of prop eq pay bind could be very long if (>>=) was not defined using pay . One
participant who defined (>>=) by hand had the good idea to prove that Cost (a, c)>>=k =
pay c (k a) as a lemma!

Common errors:

• Forgetting to use associativity, or only citing commutativity while also using associativity.
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Problem 6 (12p): (Fueled computation)

In the following, rather than just being interested in the total cost of a computation, we want
to limit the cost of a computation. We run computations with a budget from which the costs
are paid. If the budget is spent before the computation has finished, we abort the computation.
Function try m handler allows us to run handler if m was aborted, yet the handler only receives
the budget that was left just before the first payment in m failed.

class (MonadCost c m,Num c,Ord c)⇒ MonadFuel c m where
try ::m a → m a → m a

type Fueled c a

instance (Monoid c,Num c,Ord c)⇒ MonadCost c (Fueled c)
instance (Monoid c,Num c,Ord c)⇒ MonadFuel c (Fueled c)

The runner runFueled for Fueled c a computations takes a fallback value in a and a initial
budget in c. In any case, the remaining fuel is returned. If the computation ran out of fuel, the
fallback value is returned, otherwise the result of the computation.

runFueled :: a → c → Fueled c a → (a, c)

As an example, let us first implement a helper afford that will run a priced computation if
possible or return a fallback value.

afford ::MonadFuel c m ⇒ a → c → m a → m a
afford fallback cost computation =
try (pay cost computation) (return fallback)

Using afford , the function hare n computes (m,n ′) such that m is largest with n = n ′ + 1 +
2 + ...+m and n,n ′,m are natural numbers.

hare :: Integer → (Integer , Integer)
hare n = runFueled (−1) n $ loop 0
where
loop :: Integer → Fueled Integer Integer
loop m = afford m (m + 1) $ loop (m + 1)

1. Implement type Fueled , function runFueled and the Monad , MonadCost , and MonadFuel
instances. To that end, you may use the standard Haskell monad transformers.

2. What does your implementation return in the following example?

exTry = runFueled "A" 4 do
try (pay 3 $ pay 3 $ return "B") do
try (pay 2 $ return "C") do
pay 1 $ return "D"

Explain the result.

3. Which of the laws of pay that we have required for Cost also hold for Fueled?

Please justify your answer, but a formal proof is not required.
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SOLUTION: 1. Implementation using the ExceptT monad transformer and the State
monad:

data OutOfFuel = OutOfFuel

newtype Fueled c a = Fueled {unFueled :: ExceptT OutOfFuel (State c) a }
deriving (Functor ,Applicative,Monad)

runFueled :: a → c → Fueled c a → (a, c)
runFueled a c (Fueled m) = (fromRight a r , c′)

where
(r , c′) = runState (runExceptT m) c

instance (Monoid c,Num c,Ord c)⇒ MonadCost c (Fueled c) where
pay c m = Fueled do
fuel ← lift get
let fuel ′ = fuel − c
if fuel ′ < 0 then throwError OutOfFuel else do
lift $ put fuel ′

unFueled m

instance (Monoid c,Num c,Ord c)⇒ MonadFuel c (Fueled c) where
try m1 m2 = Fueled $ unFueled m1 ‘catchError ‘ λOutOfFuel → unFueled m2

2. Definition exTry returns ("D", 0). From the initial budget of 4 units, first 3 units are spent.
For the next payment of 3 the budget is short, so we abort the attempt of returning "B". The
next option to pay 2 to return "C" also exceeds the budget. We can however pay 1 and return
"D" but then our budget totally consumed. Since we managed to terminate the computation
just in time, the fallback value of "A" does not become active.

3. We cannot aggregate payments in Fueled since they might then exceed our budget while
individual payments could go through. Thus laws prop pay mappend and prop pay bind are
not valid for Fueled . Only prop pay empty remains valid as paying 0 is possible with any budget
and will not alter our budget.

GRADING: Common errors:

• Treating the c in a Fueled c a as the amount of fuel left in some places but as the amount
of fuel used so far in other places.

• Defining Fueled c a as a wrapper around (a, c). If the c is the amount of fuel spent so
far, it is impossible to tell how much is left; if it is the amount of fuel that is left, it is
impossible to plug in an initial fuel value in runFueled .

• Missing that if try m handler goes to the handler, the fuel consumed by m should still be
consumed. This is important for understanding exTry as well.
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