
Chalmers | Göteborgs Universitet
Andreas Abel, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260

Monday, August 26, 2024, 14:00 - 18:00, J.

(including example solutions to programming problems)

• Examiner: Andreas Abel (+46-31-772-1731), visits 14:45 and 16:15.

• The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: ⩾ 24 points, 4: ⩾ 36 points, 5: ⩾ 48 points.
GU: Godkänd ⩾ 24 points, väl godkänd ⩾ 48 points.
PhD student: ⩾ 36 points to pass.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes – a “summary
sheet”. These notes may be typed or handwritten. They may be from any source. If this
summary sheet is brought to the exam it must also be handed in with the exam (so make a
copy if you want to keep it).

• Notes:

– Read through the exam sheet first and plan your time.

– Answers preferably in English, some assistants might not read Swedish.

– If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

– Hand in the summary sheet (if you brought one) with the exam solutions.

– Exam review: please contact the examiner.

1



An interface for errors and warnings

This is a possible interface for a monad that allows to throw fatal errors and non-fatal warnings:

class (Monad m,Monoid w)⇒ MonadErrorWarning e w m
where
raise :: e → m a
handle :: (e → w → m a)→ m a → m a
warn :: w → m ()
clear ::m a → m (a,w)

Herein, e is the type of errors and w the type of warnings. Only one error can be thrown in a
computation, and it will abort the computation. However, many warnings can be raised; those do
not abort the computation. Warnings are merely collected; thus, the type w is required to be a
Monoid . Recall the interface to monoids (slightly simplified, not requiring a Semigroup superclass):

class Monoid a where
mappend :: a → a → a -- Associative binary operation.
mempty :: a -- Left and right unit for mappend .

In MonadErrorWarning , mempty is used for “no warnings” and mappend for joining two warning
collections.

The individual methods of MonadErrorWarning shall implement the following informal speci-
fication. (In the specification we refer to some laws prop XYZ given later which can be ignored in
the first reading.)

1. raise e throws fatal error e. Subsequent statements are not executed (prop bind raise).

2. handle h comp runs computation comp. If comp raises no error, its result is returned
(prop handle warn return). Otherwise, its result is discarded and the handler h w e is
run, where w is the collection of warnings raised in comp and e the error thrown in comp
(prop handle warn raise).

3. warn w appends w to the so far collected warnings (prop warn mempty and prop warn mappend).
It has no result otherwise.

4. clear comp runs comp and returns its result and collected warnings. The collection of warnings
is reset, thus, the computation clear comp itself is warning-free (prop clear warn return).

We do not attempt to make the specification completely formal, but we identify the follow-
ing equational laws, written as QuickCheck properties, that should hold for each instance of
MonadErrorWarning :

prop bind raise e k = (raise e >>= k) ≡ raise e

prop handle warn raise h w e = handle h (warn w >> raise e) ≡ h e w
prop handle warn return h w a = handle h (warn w >> return a) ≡ (warn w >> return a)

prop warn mempty = warn mempty ≡ return ()
prop warn mappend w1 w2 = warn (w1 ‘mappend ‘ w2 ) ≡ (warn w1 >> warn w2 )

prop clear warn return w a = clear (warn w >> return a) ≡ return (a,w)
prop clear raise e = clear (raise e) ≡ raise e

(Remember that m1 >>m2 is just m1 >>= λ → m2.)

2



Problem 1 (8p): (Derived laws for MonadErrorWarning)

By equational reasoning, derive the following additional laws for MonadErrorWarning .

prop handle return h a = handle h (return a) ≡ return a
prop handle raise warn h w e = handle h (raise e >> warn w) ≡ h e mempty

Reason step by step, only using one law at a time. For each step, state which law you used. Use
the laws for Monoid , Monad , and the original laws for MonadErrorWarning . You may (but need
not) use the EquationalReasoning format from the lecture.

SOLUTION:

prop handle return h a = proof
(handle h (return a)) ≡⟨ Thm "monad_left_unit" ⟩≡
(handle h (return ()>>= λ → return a)) ≡⟨ Def ">>" ⟩≡
(handle h (return ()>> return a)) ≡⟨ Thm "prop_warn_mempty" ⟩≡
(handle h (warn mempty >> return a)) ≡⟨ Thm "prop_handle_warn_return" ⟩≡
(warn mempty >> return a) ≡⟨ Thm "prop_warn_mempty" ⟩≡
(return ()>> return a) ≡⟨ Thm "monad_left_unit" ⟩≡
(return a)

prop handle raise warn h w e = proof
(handle h (raise e >> warn w)) ≡⟨ Thm "prop_bind_raise" ⟩≡
(handle h (raise e)) ≡⟨ Thm "monad_left_unit" ⟩≡
(handle h (return ()>> raise e)) ≡⟨ Thm "prop_warn_mempty" ⟩≡
(handle h (warn mempty >> raise e)) ≡⟨ Thm "prop_handle_warn_raise" ⟩≡
(h e mempty)

3



Problem 2 (16p): (A monad implementing MonadErrorWarning)

Implement MonadErrorWarning by a suitable type EW e w a. Concretely, provide a definition of
EW and the following type class instances.

instance Monoid w ⇒ Monad (EW e w)
instance Monoid w ⇒ MonadErrorWarning e w (EW e w)

Also provide a suitable function

runEW :: EW e w a →

that allows to run EW -computations, returning the collected warnings and a value of Either e a,
containing either the thrown error e or the regular computation result a.

You need not give instances of Functor and Applicative.

CLARIFICATION: But the code for return must be presented.

SOLUTION:

newtype EW e w a = EW {runEW :: (Either e a,w)}
instance Monoid w ⇒ Monad (EW e w) where

return a = EW (Right a,mempty)

EW (Left e,w) >>= k = EW (Left e,w)
EW (Right a,w)>>= k = case k a of

EW (r ,w ′)→ EW (r ,w ‘mappend ‘ w ′)

instance Monoid w ⇒ MonadErrorWarning e w (EW e w) where

raise e = EW (Left e,mempty)

handle h (EW (Left e,w)) = h e w
handle h (EW (Right a,w)) = EW (Right a,w)

warn w = EW (Right (),w)

clear (EW (Left e,w)) = EW (Left e,w)
clear (EW (Right a,w)) = EW (Right (a,w),mempty)

4



Problem 3 (16p): (Proving some laws for EW )
By equational reasoning, derive the following MonadErrorWarning laws for EW .

a) prop bind raise

b) prop handle warn raise

c) prop warn mappend

d) prop clear warn return

Prove the equality statements by equality chains where each step is just one of the following
transformations:

• Unfolding or folding a definition. Say which definition you (un)fold.
• Applying a proven or assumed property (theorem, lemma). State which property you use in
this step.

You may use the Monoid laws and standard Haskell computation laws.

SOLUTION:

prop bind raise e k = proof
(raise e >>= k) ≡⟨ Def "raise" ⟩≡
(EW (Left e,mempty)>>= k) ≡⟨ Def ">>=" ⟩≡
(EW (Left e,mempty)) ≡⟨ Def "raise" ⟩≡
(raise e)

prop handle warn raise h w e = proof
(handle h (warn w >> raise e)) ≡⟨ Def "warn" ⟩≡
(handle h (EW (Right (),w)>> raise e)) ≡⟨ Def "raise" ⟩≡
(handle h (EW (Right (),w)>> EW (Left e, empty))) ≡⟨ Def ">>=" ⟩≡
(handle h (EW (Left e,w ‘mappend ‘ empty))) ≡⟨ Thm "monoid_right_unit" ⟩≡
(handle h (EW (Left e,w))) ≡⟨ Def "handle" ⟩≡
(h e w)

prop warn mappend w1 w2 = proof
(warn (w1 ‘mappend ‘ w2 )) ≡⟨ Def "warn" ⟩≡
(EW (Right (),w1 ‘mappend ‘ w2 )) ≡⟨ Def ">>=" ⟩≡
(EW (Right (),w1 )>> EW (Right (),w2 )) ≡⟨ Def "warn" ⟩≡
(warn w1 >> warn w2 )

prop clear warn return w a = proof
(clear (warn w >> return a)) ≡⟨ Def "warn" ⟩≡
(clear (EW (Right (),w)>> return a)) ≡⟨ Def "return" ⟩≡
(clear (EW (Right (),w)>> EW (Right a,mempty))) ≡⟨ Def ">>=" ⟩≡
(clear (EW (Right a,w ‘mappend ‘mempty))) ≡⟨ Thm "monoid_right_unit" ⟩≡
(clear (EW (Right a,w))) ≡⟨ Def "clear" ⟩≡
(EW (Right (a,w),mempty)) ≡⟨ Def "return" ⟩≡
(return (a,w))

5



Problem 4 (10p): (Interpreter for multiplicative expressions)
Make a little domain-specific language (DSL) for expressions consisting of integer literals, integer
multiplication, and integer division.

type Exp

eLit :: Integer → Exp
eMul :: Exp → Exp → Exp
eDiv :: Exp → Exp → Exp

Further, write an interpreter for such expressions that returns an Integer and reports fatal and
non-fatal issues (errors and warnings).

• Error DivisionByZero when division by 0 is attempted during evaluation.

• Warnings MultiplicationWithOne and DivisionByOne when the original expression contains
a multiplication with 1 or a division by 1. For example, interpreting either eMul (eLit 1) e
or eMul e (eLit 1) or eDiv e (eLit 1) should trigger such a warning. However, e.g.
eMul (eLit 4) (eDiv (eLit 2) (eLit 2)) should not trigger the warning, because the multipli-
cation by 1 is not contained in the original expression but only happens during evaluation.

The interpreter should have type

eval :: Exp → EW E W Integer

for suitably defined types E and W .

CLARIFICATION: It might be better to require a more polymorphic type:

eval ::MonadErrorWarning E W m ⇒ Exp → m Integer

SOLUTION:

data Exp
= ELit Integer
| EMul Exp Exp
| EDiv Exp Exp
deriving Eq

data Warn
= MultiplicationWithOne
| DivisionByOne

data Err
= DivisionByZero

eLit :: Integer → Exp

6



eLit = ELit

eMul :: Exp → Exp → Exp
eMul = EMul

eDiv :: Exp → Exp → Exp
eDiv = EDiv

-- eval :: Exp -¿ EW Err [Warn] Integer
eval ::MonadErrorWarning Err [Warn ] m ⇒ Exp → m Integer
eval = λcase

ELit i → return i
EMul e1 e2 → do
when (e1 ≡ ELit 1) $ warn [MultiplicationWithOne ]
when (e2 ≡ ELit 1) $ warn [MultiplicationWithOne ]
i1 ← eval e1
i2 ← eval e2
return $ i1 ∗ i2

EDiv e1 e2 → do
when (e2 ≡ ELit 1) $ warn [DivisionByOne ]
i1 ← eval e1
i2 ← eval e2
when (i2 ≡ 0) $ raise DivisionByZero
return $ i1 ‘div ‘ i2

7



Problem 5 (10p): (Monad transformer)
Recall the concept of a monad transformer:

class MonadTrans t where
lift ::Monad m ⇒ m a → t m a

Define a type EWT e w m a that adds the MonadErrorWarning functionality on top of any Monad
m. Implement the following instances:

instance (Monoid w ,Monad m)⇒ Monad (EWT e w m)
instance (Monoid w ,Monad m)⇒ MonadErrorWarning e w (EWT e w m)
instance (Monoid w) ⇒ MonadTrans (EWT e w)

EWT should satisfy the Monad and MonadErrorWarning laws albeit you do not need to prove
them. Also, you need not give Functor or Applicative instances.

CLARIFICATION: But the code for return must be presented.

SOLUTION:

newtype EWT e w m a = EWT {runEWT ::m (Either e a,w)}
instance (Monad m,Monoid w)⇒ Monad (EWT e w m) where

return a = EWT $ return (Right a,mempty)

m >>= k = EWT do
runEWT m >>= λcase

(Left e,w) → return (Left e,w)
(Right a,w)→ do

(r ,w ′)← runEWT (k a)
return (r ,w ‘mappend ‘ w ′)

instance (Monad m,Monoid w)⇒ MonadErrorWarning e w (EWT e w m) where

raise e = EWT $ return (Left e,mempty)

handle h m = EWT do
runEWT m >>= λcase
(Left e,w) → runEWT $ h e w
(Right a,w)→ return (Right a,w)

warn w = EWT $ return (Right (),w)

clear m = EWT do
runEWT m >>= λcase
(Left e,w) → return (Left e,w)
(Right a,w)→ return (Right (a,w),mempty)

instance (Monoid w)⇒ MonadTrans (EWT e w) where

lift m = EWT do

8



a ← m
return (Right a,mempty)

9


