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Andreas Abel, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260

Saturday, March 16, 2024, 8:30 - 12:30, HB3.

(including example solutions to programming problems)

• Examiner: Andreas Abel (+46-31-772-1731), visits 9:30 and 11:30.

• The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: ⩾ 24 points, 4: ⩾ 36 points, 5: ⩾ 48 points.
GU: Godkänd ⩾ 24 points, väl godkänd ⩾ 48 points.
PhD student: ⩾ 36 points to pass.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes – a “summary
sheet”. These notes may be typed or handwritten. They may be from any source. If this
summary sheet is brought to the exam it must also be handed in with the exam (so make a
copy if you want to keep it).

• Notes:

– Read through the exam sheet first and plan your time.

– Answers preferably in English, some assistants might not read Swedish.

– If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

– Hand in the summary sheet (if you brought one) with the exam solutions.

– Exam review: Monday, 25 March 2024, 11-12am, EDIT 5128.
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Problem 1 (20p): (A Monad for non-determinism)
A non-deterministic program can exhibit different behaviors on different runs even for the same

input. In this problem, we model all possible results from a non-deterministic computation via a
monad ND .

When we have a computation m ::ND a, we should think about it as a computation that might
return many different results of type a due to some source of non-determinism. The source of
non-determinism or how non-determinism gets introduced in programs is not important here.

The computation m >>= f consists of executing m, taking all its possible results (of type a),
passing each of them to continuation f :: a → ND b and collecting all the possible results (of type
b) of those computations.

For instance, the following programmodels all the possible outputs of adding two non-deterministic
computations producing integers.

ndSum ::ND Int → ND Int → ND Int
ndSum m1 m2 = do
n1 ← m1

n2 ← m2

return (n1 + n2)

Variables n1 and n2 can be seen as representing one of the many possible values that m1 and
m2 might respectively produce due to the presence of non-determinism. Overall, ndSum performs
the sums for all the possible combination of numbers being provided by m1 and m2.

To be more concrete, the following code models two programs that can produce different integers
in a non-deterministic manner.

number1 :: ND Int
number1 = choice [1, 42, 100] -- possible numbers are 1,42, and 100.

number2 :: ND Int
number2 = choice [2000, 30000, 50000] -- possible numbers are 2000,30000,50000

The primitive choice xs models a computation that produces values from the given list. If we
apply ndSum to the programs above, we get the following output:

>>> ndSum number1 number2
ND {results = [2001, 30001, 50001, 2042, 30042, 50042, 2100, 30100, 50100]}

Observe that ndSum number1 number2 captures all the possible results of adding two numbers
comming from number1 and number2, respectivelly.

One way to implement the monad ND is by simply considering that each computation returns
a list of all the possible results.

newtype ND a = ND {results :: [a ]}

The non-proper morphisms of ND are given through the MonadPlus interface.

class Monad m ⇒ MonadPlus m where
mzero ::m a
mplus ::m a → m a → m a
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Method mzero models a computation that has no results, and mplus m1 m2 a computation that
has the results of computation m1 plus the results of computation m2.

This is an example of how mplus works:

>>> mplus number1 number2
ND {results = [1, 42, 100, 2000, 30000, 50000]}

For our purposes, an instance of MonadPlus should satisfy these properties:

1. mplus forms a monoid with mzero as left and right identity.
2. mplus and mzero distribute over (>>=) from the left.

As QuickCheck properties, these laws read as follows:

prop mplus assoc m1 m2 m3 = (m1 ‘mplus‘m2) ‘mplus‘m3 ≡ m1 ‘mplus‘ (m2 ‘mplus‘m3)
prop mplus left identity m = mzero ‘mplus‘m ≡ m
prop mplus right identity m = m ‘mplus‘mzero ≡ m

prop mzero bind k = (mzero >>= k) ≡ mzero
prop mplus bind m1 m2 k = ((m1 ‘mplus‘m2)>>= k) ≡ ((m1 >>= k) ‘mplus‘ (m2 >>= k))

a) Your first task is to give the Monad and MonadPlus instances for ND . It is sufficient to
provide the definition for return, (>>=), mzero and mplus.

SOLUTION: (10p)

instance Monad ND where
return x = ND [x ]

ND [ ] >>= k = mzero
ND (x : xs)>>= k = k x ‘mplus‘ (ND xs >>= k)

instance MonadPlus ND where
mzero = ND [ ]
mplus (ND xs) (ND ys) = ND (xs ++ ys)

b) Your second task is to provide an implementation of choice that works for all instances of
MonadPlus.

choice ::MonadPlus m ⇒ [a ]→ m a

SOLUTION: (5p)

choice ::MonadPlus m ⇒ [a ]→ m a
choice = foldr mplus mzero ◦map return
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c) The non-deterministic monad enables to write simple and compact code. For instance, the
following code produces all possible permutation of a list.

perm ::MonadPlus m ⇒ [a ]→ m [a ]
perm [ ] = return [ ]
perm (x : xs) = do

ps ← perm xs
insert x ps

The line ps ← perm xs could be thought of as ”ps is one of the possible permutations of xs
(perm xs) selected in a non-deterministic manner”, and insert x ps models that x is inserted
into ps in a non-deterministic manner, i.e., in some position of the list ps.

The following invocation of perms shows how it works.

>>> perm [1, 2, 3] ::ND [Int ]
ND {results = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]}

Observe that computing all the possible outputs of perm [1, 2, 3] gives the actual permutations
of the list.

Your third task is to implement the function insert :

insert ::MonadPlus m ⇒ a → [a ]→ m [a ]

The following example shows how insert works.

>>> insert 10 [1, 2, 3] ::ND [Int ]
ND {results = [[10, 1, 2, 3], [1, 10, 2, 3], [1, 2, 10, 3], [1, 2, 3, 10]]}

SOLUTION: (5p)

insert x xs = return (x : xs) ‘mplus‘ case xs of
[ ] → mzero
y : ys → (y :) ⟨$⟩ insert x ys
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Problem 2 (20p): (Proving the laws for ND)
In this problem, we prove the Monad and MonadPlus laws for ND .
You can assume the monoid laws for the append function (++) and those for MonadPlus ND ,

i.e., prop mplus assoc, prop mplus left identity and prop mplus right identity . Also, you may use
the fact that ND a is isomorphic to [a ] via constructor ND and destructor results and use the
respective laws silently:

m = ND (results m)
results (ND xs) = xs

When you prove a property by induction, state what you induct on, what the base case is and
what the step case is. Also make clear where you apply the inductive hypothesis.

Prove equality statements by equality chains where each step is just one of the following trans-
formations:

• Unfolding or folding a definition. Say which definition you (un)fold.
• Applying a proven or assumed property (theorem, lemma). State which property you use in
this step.

• Applying the induction hypothesis.

a) Prove the distributivity laws prop mzero bind and prop mplus bind .

SOLUTION: Law prop mzero bind follows from unfolding the definitions: (3+4p)

prop ND mzero bind f = proof
(mzero >>= f ) ≡⟨ Def "mzero" ⟩≡
(ND [ ]>>= f ) ≡⟨ Def "bind" ⟩≡
mzero

For prop mplus bind , we show ((ND xs ‘mplus‘m)>>= f ) ≡ ((ND xs >>= f ) ‘mplus‘ (m >>= f ))
by induction on xs, distinguishing the cases [ ] and (x : xs).

Case [ ]:

prop ND mplus bind nil m f = proof
((ND [ ] ‘mplus‘m)>>= f ) ≡⟨ Def "mzero" ⟩≡
((mzero ‘mplus‘m)>>= f ) ≡⟨ Thm "prop_mplus_left_identity" ⟩≡
(m >>= f ) ≡⟨ Thm "prop_mplus_left_identity" ⟩≡
(mzero ‘mplus‘ (m >>= f )) ≡⟨ Def "(>>=)" ⟩≡
((ND [ ]>>= f ) ‘mplus‘ (m >>= f ))

Case (x : xs):

prop ND mplus bind cons x xs m f = proof
((ND (x : xs) ‘mplus‘m)>>= f ) ≡⟨ Def "mplus" ⟩≡
((ND ((x : xs) ++ results m))>>= f ) ≡⟨ Def "(++)" ⟩≡
((ND (x : (xs ++ results m)))>>= f ) ≡⟨ Def "(>>=)" ⟩≡
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(f x ‘mplus‘ (ND (xs ++ results m)>>= f )) ≡⟨ Def "mplus" ⟩≡
(f x ‘mplus‘ ((ND xs ‘mplus‘m)>>= f )) ≡⟨ IH ⟩≡
(f x ‘mplus‘ ((ND xs >>= f ) ‘mplus‘ (m >>= f ))) ≡⟨ Thm "prop_mplus_assoc" ⟩≡
((f x ‘mplus‘ (ND xs >>= f )) ‘mplus‘ (m >>= f )) ≡⟨ Def "(>>=)" ⟩≡
((ND (x : xs)>>= f ) ‘mplus‘ (m >>= f ))

b) For Monad ND , prove left identity (return x >>= f ) ≡ f x and right identity (m >>= return) ≡
m.

SOLUTION: The left identity law for monad ND is proven by the following chain. (3+4p)

prop monad left identity x f = proof
(return x >>= f ) ≡⟨ Def "return" ⟩≡
(ND (x : [ ])>>= f ) ≡⟨ Def ">>=" ⟩≡
(f x ‘mplus‘ (ND [ ]>>= f )) ≡⟨ Def ">>=" ⟩≡
(f x ‘mplus‘mzero) ≡⟨ Thm "prop_mplus_right_identity" ⟩≡
(f x )

For the right identity law, we show (ND xs >>= return) ≡ ND xs by induction on xs, distin-
guishing the cases [ ] and (x : xs).

prop monad right identity nil = proof
(ND [ ]>>= return) ≡⟨ Def ">>=" ⟩≡
(ND [ ])

prop monad right identity cons x xs = proof
(ND (x : xs)>>= return) ≡⟨ Def ">>=" ⟩≡
(return x ‘mplus‘ (ND xs >>= return)) ≡⟨ IH ⟩≡
(return x ‘mplus‘ND xs) ≡⟨ Def "return" ⟩≡
(ND [x ] ‘mplus‘ND xs) ≡⟨ Def "mplus" ⟩≡
(ND ([x ] ++ xs)) ≡⟨ Def "++" ⟩≡
(ND (x : xs))

c) Prove the associative law:

((m >>= f )>>= g) ≡ (m >>= (λx → f x >>= g))

SOLUTION: (6p)
We prove ((ND xs >>= f )>>= g) ≡ (ND xs >>=(λy → f y >>= g)) by induction on xs. The base

6



case [ ] follows from 3 applications prop mzero bind since ND [ ] ≡ mzero. It remains to show
the case (x : xs):

prop monad assoc x xs f g = proof
((ND (x : xs)>>= f )>>= g) ≡⟨ Def "bind" ⟩≡
((f x ‘mplus‘ (ND xs >>= f ))>>= g) ≡⟨ Thm "prop_mplus_bind" ⟩≡
((f x >>= g) ‘mplus‘ ((ND xs >>= f )>>= g)) ≡⟨ IH ⟩≡
((f x >>= g) ‘mplus‘ (ND xs >>= (λy → f y >>= g))) ≡⟨ Def "bind" ⟩≡
((ND [x ]>>= (λy → f y >>= g))

‘mplus‘ (ND xs >>= (λy → f y >>= g))) ≡⟨ Thm "prop_mplus_bind" ⟩≡
((ND [x ] ‘mplus‘ND xs)>>= (λy → f y >>= g)) ≡⟨ Def "mplus" ⟩≡
((ND ([x ] ++ xs))>>= (λy → f y >>= g)) ≡⟨ Def "++" ⟩≡
(ND (x : xs)>>= (λy → f y >>= g))
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Problem 3 (20p): (DSL for Tuple Functions)
Here is the API of a DSL for composing functions on tuples:

type Fun a b

idF :: Fun a a
compF :: Fun b c → Fun a b → Fun a c

unitF :: Fun a ()

pairF :: Fun a b → Fun a c → Fun a (b, c)
crossF :: Fun a c → Fun b d → Fun (a, b) (c, d)

fstF :: Fun (a, b) a
sndF :: Fun (a, b) b

swapF :: Fun (a, b) (b, a)
assocRF :: Fun ((a, b), c) (a, (b, c))
assocLF :: Fun (a, (b, c)) ((a, b), c)

eval :: Fun a b → a → b

Its shallow embedding simply makes Fun the Haskell function type.

type FunS a b = a → b

idS = id
compS f g = f ◦ g
unitS = λa → ()

pairS f g = λa → (f a, g a)
crossS f g = λ(a, b)→ (f a, g b)

fstS = fst
sndS = snd

swapS = λ(a, b)→ (b, a)
assocRS = λ((a, b), c)→ (a, (b, c))
assocLS = λ(a, (b, c))→ ((a, b), c)

evalS f = f

However, we are looking for a deep embedding that allows us to inspect functions and optimize
their composition.

data Fun a b
instance Show (Fun a b)

Your task is to develop an optimized deep embedding of the Fun DSL via the following methodology:

1. Identify laws that allow the simplification of combined elements of Fun. Such a law is
compF idF f ≡ f but there are many more.

2. Identify Funs that can be defined in terms of others.
3. Make the others constructors of Fun.
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4. Define the API functions as smart constructors, applying simplifications according to the laws
whereever possible.

Subtasks:

a) Split the API functions into primitive and defined ones. For the latter, list their definitions.
For example:

swapF = pairF sndF fstF

It is ok to use defined functions to express other defined functions, but make sure your
definitions are not cyclic. E.g., do not both express pairF via crossF and vice versa.

SOLUTION: Besides swapF , we define the following functions in terms of others: (4p)

crossF f g = pairF (compF f fstF ) (compF g sndF )
assocRF = pairF (compF fstF fstF ) (pairF (compF sndF fstF ) (sndF ))
assocLF = pairF (pairF fstF (compF fstF sndF )) (compF sndF sndF )

b) For the primitive functions, find as many laws as possible and list them here. Make sure you
have no redundancy: none of the laws should follow from the others. E.g. compF idF idF ≡
idF would be trivially an instance of the law compF idF f ≡ f .

SOLUTION: (8p)

compF idF f ≡ f
compF f idF ≡ f
compF (compF f g) h ≡ compF f (compF g h)
compF unitF h ≡ unitF
compF fstF (pairF f g) ≡ f
compF sndF (pairF f g) ≡ g
compF (pairF f g) h ≡ pairF (compF f h) (compF g h)
pairF fstF sndF ≡ idF

c) Define a data type Fun of primitive functions and implement the rest of the API in a opti-
mizing way. E.g.

data Fun a b where
Id :: Fun a a
Comp :: Fun b c → Fun a b → Fun a c
...

idF = Id

9



compF Id f = f
compF ...

Define Fun such that it can be made an instance of the Show class:

deriving instance Show (Fun a b)

In particular, the following shallow embedding would not work because Haskell functions are
in general not printable:

data Fun a b = Fun (a → b)

Note: you can of course define auxiliary data types that are not exported in the API.

SOLUTION: (4p)

data Fun a b where
Id :: Fun a a
Comp :: Fun b c → Fun a b → Fun a c

Unit :: Fun a ()

Pair :: Fun a b → Fun a c → Fun a (b, c)
Fst :: Fun (a, b) a
Snd :: Fun (a, b) b

unitF = Unit
idF = Id
fstF = Fst
sndF = Snd

pairF Fst Snd = Id
pairF f g = Pair f g

compF Id f = f
compF g Id = g
compF (Comp f g) h = compF f (compF g h)
compF Fst (Pair f ) = f
compF Snd (Pair g) = g
compF (Pair f g) h = pairF (compF f h) (compF g h)
compF Unit = Unit
compF f g = Comp f g

d) Define eval :: Fun a b → a → b.

SOLUTION: (2p)

10



eval = λcase
Id → id
Comp f g → eval f ◦ eval g
Unit → λ → ()
Pair f g → λa → (eval f a, eval g a)
Fst → fst
Snd → snd

e) Revisit your laws and list those that do not hold literally. This means you have a law t = u
but t and u produce different elements of Fun. E.g. if you simply defined compF = Comp,
then compF idF f is just equal to Comp Id f which is different from f , violating the law
compF idF f ≡ f . For each of the laws in this list, justify why they cannot easily be handled
by smart constructors.

Hint: Check for instance that swapF is its own inverse, or the assocRF and assocLF are
inverses of each other.

SOLUTION: By the laws we have pairF (compF fstF f ) (compF sndF f ) =
compF (pairF fstF sndF ) f = compF idF f = f , but the smart constructors compute
just PairF (CompF FstF f ) (CompF SndF f ).

Adding a clause like

pairF (CompF FstF f ) (CompF SndF g) | f ≡ g = f

would handle this case, but this would require us to implement equality, and run the poten-
tially expensive equality check in the smart constructor. (2p)
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